THE DISCRETE MEAN SQUARE OF THE DIRICHLET L-FUNCTION AT NONTRIVIAL ZEROS OF ANOTHER DIRICHLET L-FUNCTION
نویسندگان
چکیده
منابع مشابه
The Mean-square of Dirichlet L-functions
where α and β are small complex numbers satisfying α, β ≪ 1/ log q. Ingham [Ing] considered an analogous moment for the Riemann zeta-function on the critical line with small shifts. Paley [Pal] considered the moment above for Dirichlet L-functions. Heath-Brown [HB] has computed a similar moment, but for all characters modulo q, in the case that α = β = 0. His result is Theorem 1 (HB). There are...
متن کاملZeros of Dirichlet L-functions over Function Fields
Random matrix theory has successfully modeled many systems in physics and mathematics, and often analysis in one area guides development in the other. Hughes and Rudnick computed 1-level density statistics for low-lying zeros of the family of primitive Dirichlet L-functions of fixed prime conductor Q, as Q→∞, and verified the unitary symmetry predicted by random matrix theory. We compute 1and 2...
متن کاملReal zeros of quadratic Dirichlet L - functions
A small part of the Generalized Riemann Hypothesis asserts that L-functions do not have zeros on the line segment ( 2 , 1]. The question of vanishing at s = 2 often has deep arithmetical significance, and has been investigated extensively. A persuasive view is that L-functions vanish at 2 either for trivial reasons (the sign of the functional equation being negative), or for deep arithmetical r...
متن کاملSome Mean Value Theorems for the Riemann Zeta-function and Dirichlet L-functions
The theory of the Riemann zeta-function ζ(s) and Dirichlet L-functions L(s, χ) abounds with unsolved problems. Chronologically the first of these, now known as the Riemann Hypothesis (RH), originated from Riemann’s remark that it is very probable that all non-trivial zeros of ζ(s) lie on the line < s = 12 . Later on Piltz conjectured the same for all of the functions L(s, χ) (GRH). The vertical...
متن کاملOn the Mean Values of Dirichlet L-functions
Abstract. We study the 2k-th power moment of Dirichlet L-functions L(s, χ) at the centre of the critical strip (s = 1/2), where the average is over all primitive characters χ (mod q). We extend to this case the hybrid Euler-Hadamard product results of Gonek, Hughes and Keating for the Riemann zeta-function. This allows us to recover conjectures for the moments based on random matrix models, inc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Number Theory
سال: 2013
ISSN: 1793-0421,1793-7310
DOI: 10.1142/s1793042113500085